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ABSTRACT
We develop and describe a stable gain scheduling controller

for a gas turbine engine that drives a variable pitch propeller. A
stability proof is developed for gain scheduled closed-loop sys-
tem using global linearization and linear matrix inequality (LMI)
techniques. Using convex optimization tools, a single quadratic
Lyapunov function is computed for multiple linearizations near
equilibrium and non-equilibrium points of the nonlinear closed-
loop system. This approach guarantees stability of the closed-
loop gas turbine engine system. Simulation results show the de-
veloped gain scheduling controller is capable of regulating a tur-
boshaft engine for large thrust commands in a stable fashion with
proper tracking performance.

NOMENCLATURE
N1 Low Spool Speed (Non-dimensional)

∗Address all correspondence to this author.

N2 High Spool Speed (Non-dimensional)
u1 Fuel Flow Control Input (Non-dimensional)
u2 Propeller Pitch Angle Control Input (Deg)
T Thrust (N)
TSFC Thrust Specific Fuel Consumption (kg/s/N)
α Scheduling Parameter
λ Eigenvalue

1 Introduction
Stability and control of gas turbine engines have been of in-

terest to researchers and engineers from a variety of perspectives.
An introduction to the analysis and design of engine control sys-
tems can be found in [1]. The basics of controlling a gas turbine
engine while satisfying numerous constraints has been reviewed
in [2]. The design of engine control and monitoring systems with
a dual interest in both turbofan and turboshaft engines has been
covered in [3]. An application of robust stability analysis tools
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for uncertain turbine engine systems is presented in [4]. An ap-
plication of the Linear-Quadratic-Gaussian with Loop-Transfer-
Recovery methodology to design a control system for the F-100
turbofan engine is presented in [5], and for a simplified turbofan
engine model is considered in [6]. A unified robust multivari-
able approach to propulsion control design has been developed
in [7]. The development of other control techniques, such as
sliding mode, for gas turbine engine application can be found
in [8].

To facilitate the stability analysis of nonlinear systems, such
as gas turbine engines, an efficient technique is to approximate
them by a linear time-varying (LTV) system. This concept,
which is known as global linearization, can be found in [9, 10].
More recent work on global linearization and the use of Linear
Matrix Inequalities (LMIs) for the analysis of dynamical sys-
tems can be found in [11]. Some Soviet literatures on the ab-
solute stability problem, like Lur’e and Postnikov [12, 13] and
Popov [14–16], also implicitly use the idea of global lineariza-
tion. Recent literatures that demonstrate the practical power of
global linearization technique include [17, 18], and [19]. [19]
uses this idea along with the notion of incremental stability.

One of the control design approaches, which perhaps is one
of the most popular nonlinear control design approaches and
has been widely and successfully applied in fields ranging from
aerospace to process control [20, 21], is gain scheduling. Gas
turbine engines are no exception, and research on gain schedul-
ing control of gas turbine engines is presented in [22–29]. A
simplified scheme for scheduling multivariable controllers for
robust performance over a wide range of turbofan engine op-
erating points is presented in [23]. In a recent work presented
in [27], results on polynomial fixed-order controller design are
extended to SISO gain-scheduling with guaranteed stability and
H∞ performance for a turbofan engine, over the whole schedul-
ing parameter range. In this work, the engine Linear Parameter
Varying (LPV) representation depends on an exogenous variable
parameter which is the combustion chamber pressure.

In the previous works [30, 31] the authors discussed con-
trollers for single spool and twin spool turboshaft systems. Those
controllers are designed for small transients, and small throttle
commands. In this paper we develop an output dependent gain
scheduled control structure for a MIMO linear parameter depen-
dent model of a JetCat SPT5 turboshaft engine [32] using the
method presented in [20,33–35]. This controller is designed to be
used for the entire flight envelope of the twin spool turboshaft en-
gine with stability guarantees. The scheduling variable in our de-
sign process is an endogenous parameter, which is a function of
the gas turbine engine spool speeds. This endogenous scheduling
variable captures the plant nonlinearities, as explained in [33,34],
since the spool speeds are the main states of the turboshaft engine
state-space model, and also the outputs of the system. The stabil-
ity analysis for the closed-loop system presented, and the essen-
tial part of the stability analysis is to find a common quadratic

Lyapunov function for multiple linearizations near equilibrium
and non-equilibrium points, which are distributed over the entire
operational envelope of the plant.

The paper is organized as follows: First, a linear parameter
dependent representation of the plant is presented. Concepts for
output dependent gain scheduled control of this model are then
developed. Third, the stability analysis of the closed-loop sys-
tem is presented. Finally, simulation results for gain scheduling
control of a MIMO physics-based model of a JetCat SPT5 tur-
boshaft engine are presented. Simulation results show the suc-
cessful application of the proposed controller for the entire flight
envelope of the turboshaft engine with guaranteed stability and
proper tracking performance.

2 Gain Scheduling Control Design
Consider the nonlinear dynamical system

ẋp = f p(xp,u),

y = gp(xp,u),
(1)

where xp ∈ ℜn is the state vector, u ∈ ℜm is the control input
vector, y∈ℜm is the output vector, f p(.) is an n-dimensional dif-
ferentiable nonlinear vector function which represents the plant
dynamics, and gp(.) is an m-dimensional differentiable nonlinear
vector function which generates the plant outputs. We intend to
design a feedback control such that y properly tracks a reference
signal r as time goes to infinity, where r ∈ Dr ⊂ℜm, and Dr is a
compact set.

Assume that for each r ∈ Dr, there is a unique pair (xp
e ,ue)

that depends continuously on r and satisfies the equations

0 = f p(xp
e ,ue),

r = gp(xp
e ,ue),

(2)

xp
e is the desired equilibrium point and ue is the steady-state con-

trol that is needed to maintain equilibrium at xp
e . It is often useful

to parameterize the family of system equilibria as follows:

Definition 1. The functions xp
e (α),ue(α), and re(α) define an

equilibrium family for the plant (1) on the set Ω if

f p(xp
e (α),ue(α)) = 0,

gp(xp
e (α),ue(α)) = re(α), α ∈Ω.

(3)

Let O ⊂ℜm+n be the region of interest for all possible sys-
tem state and control vector (xp,u) during the system operation,
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and denote xp
ei and uei, i ∈ I = 1,2, ...,q, as a set of constant op-

erating points located at some representative and properly sepa-
rated points inside O. Introduce a set of q regions Oi, i ∈ I cen-
tered at the chosen operating points (xp

ei,uei), and denote their
interiors as Oi0, such that O j0

⋂
Ok0 = � for all j 6= k, and⋃l

i=1 Oi = O. The linearization of the plant at each equilibrium
point is

ẋp = Ap
i (x

p− xp
ei)+Bp

i (u−uei),
y =Cp

i (x
p− xp

ei)+Dp
i (u−uei)+ yei,

(4)

where the matrices are obtained as follows

Ap
i =

∂ f p

∂xp |(xp
ei,uei)

, ∀(xp,u) ∈ Oi,

Bp
i =

∂ f p

∂u
|(xp

ei,uei)
, ∀(xp,u) ∈ Oi,

Cp
i =

∂gp

∂xp |(xp
ei,uei)

, ∀(xp,u) ∈ Oi,

Dp
i =

∂gp

∂u
|(xp

ei,uei)
, ∀(xp,u) ∈ Oi.

(5)

Note that (xp,u) belongs to only one Oi at each time. Corre-
sponding to each linearization at ith equilibrium point, there ex-
ist an αi ∈ Ω, which is a function of equilibrium values of the
system outputs, i.e. yei.

The family of plant linear models (4) can be written as

δ ẋp = Ap(α)δxp +Bp(α)δu,

δy =Cp(α)δxp +Dp(α)δu, ∀α ∈Ω,
(6)

where

δxp = xp− xp
e (α)

δy = y− ye(α),

δu = u−ue(α).

(7)

Ap(α), Bp(α), Cp(α), and Dp(α) are the parameterized plant
linearization family matrices and xp

e (α), ue(α), and ye(α) are
the parameterized steady-state variables for the states, inputs and
outputs of the plant, which form the equilibrium manifold of
plant (1). The subscript ”e” stands for ”steady-state” through-
out this paper.

Based on the results from [20, 33–35], an output depen-
dent gain scheduled controller for plant (6) is designed as fol-
lows. First, a set of parameter values αi is selected, which
represent the range of the plant’s dynamics, and a linear time-
invariant controller is designed for each corresponding linear

model. Then, in between operating points, the controller gains
are linearly interpolated such that for all frozen values of the
parameters, the closed-loop system has satisfactory properties,
such as nominal stability and robust performance. To guaran-
tee that the closed-loop system retains the dynamic properties
of the frozen-parameter designs, the scheduling variables should
vary slowly with respect to the system dynamics [33]. Figure 1,
shows schematically how the output dependent gain scheduled
controller works.

FIGURE 1. Output dependent gain scheduling controller diagram

The parameter α is called the scheduling variable and should
be measurable in real time. α can be a function of endogenous
variables (i.e., depending on the plant states) and/or exogenous
variables (i.e., independent of the plant states). In LPV systems,
this parameter is an exogenous parameter [36]. Some of the ex-
amples of exogenous parameter selection in LPV control of tur-
bine engines are presented in [25–27]. In [25], the scheduling
parameter is defined as a function of the exogenous signals de-
scribing the surroundings, like altitude, intake Mach number, and
a health parameter describing the state of the compressor. In [26],
the scheduling parameter is defined as a function of lagged mea-
surement of engine thrust and altitude, which are exogenous vari-
ables. In [27], the scheduling parameter is defined to be the com-
bustion chamber pressure, which is an exogenous variable. In
gain-scheduling, this parameter is a function of the output and
hence it is an endogenous parameter [36]. Some of the examples
of endogenous parameter selection for gain-scheduled control of
turbine engines can be found in [22,28,29]. In [22], the schedul-
ing parameter is defined to be the engine low pressure spool
speed, which is one of the outputs of the system. In [28, 29], the
scheduling parameter is defined to be the engine high pressure
spool speed. In the turboshaft engine control example described
later in this paper, α is defined to be the Euclidean norm of the
engine spool speeds, which can be measured in real-time. Since
the spool speeds are the only plant states in the model and also
due to the fact that we need the plant nonlinearities to be cap-
tured by the output vector, as explained in [33, 34], we defined
the scheduling parameter to be the function of both spool speeds.
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On the other hand, for a simpler interpolation process, we wanted
the scheduling parameter to be a scalar, so we used the Euclidean
norm of the output vector.

The design of a linearization gain scheduled controller re-
quires designing a linear controller family corresponding to the
plant linearization family (6). Let the parameterized linear con-
troller family be

δ ẋc = Ac(α)δxc +Bc(α)[δy−δ r],

δu =Cc(α)δxc +Dc(α)[δy−δ r], ∀α ∈Ω,
(8)

where

δxc = xc− xc
e(α),

δ r = r− re(α), ∀α ∈Ω.
(9)

xc
e(α) and re(α) are the parameterized steady-state variables for

the controller states and reference signals. A standard realization
of the parameterized controller can be written with the reference
signal explicitly displayed as

[
δ ẋc

δu

]
=

[
Ac(α) Bc(α) −Bc(α)
Cc(α) Dc(α) −Dc(α)

]  δxc

δy
δ r

 , ∀α ∈Ω. (10)

We have to obtain, based on the linear controller family (10),
a controller that has the general form

ẋc = f c(xc,y,r),

u = gc(xc,y,r),
(11)

with the input and output signals corresponding to the nonlin-
ear plant (1). f c(.) is an m-dimensional differentiable nonlinear
vector function which represents the controller dynamics, and
gc(.) is an m-dimensional differentiable nonlinear vector func-
tion which generates the controller outputs.

The objective in linearization scheduling is that the equilib-
rium family of the controller (11) match the plant equilibrium
family, so that the closed-loop system maintains suitable trim
values, and the linearization family of the controller obtained
from linearizing (11) is the same as the designed family of linear
controllers shown in (8) [20]. For the equilibrium conditions of
plant (1) and controller (11) to match, there must exist a function
xc

e(α) such that

0 = f c(xc
e(α),ye(α),re(α)),

ue(α) = gc(xc
e(α),ye(α),re(α)), ∀α ∈Ω,

(12)

where

Ac(α) =
∂ f c

∂xc |(xc
e(α),ye(α),re(α)),

Bc(α) =
∂ f c

∂y
|(xc

e(α),ye(α),re(α)),

Cc(α) =
∂gc

∂xc |(xc
e(α),ye(α),re(α)),

Dc(α) =
∂gc

∂y
|(xc

e(α),ye(α),re(α)), ∀α ∈Ω.

(13)

So the controller family has the form

ẋc = Ac(α)[xc− xc
e(α)]+Bc(α)[y− r],

u =Cc(α)[xc− xc
e(α)]+Dc(α)[y− r]+ue(α), ∀α ∈Ω.

(14)
Note that re(α)= ye(α), as a result δy−δ r = y−r. The schedul-
ing parameter α is treated as a parameter throughout the de-
sign process, and then it becomes a time-varying input signal
to the gain-scheduled controller implementation through the de-
pendence α(t) = p(y(t)). The parameter α is an endogenous
variable, since it is a function of the plant outputs. Replacing α

with p(y), the gain scheduled controller becomes

ẋc = Ac(p(y))[xc− xc
e(p(y))]+Bc(p(y))[y− r],

u =Cc(p(y))[xc− xc
e(p(y))]+Dc(p(y))[y− r]+ue(p(y)).

(15)
Linearization of (15) about an equilibrium specified by α yields

δ ẋc = Ac(α)δxc +Bc(α)[y− r]

− [Ac(α)
∂xc

e(α)

∂α
]× [

∂ p
∂y

(ye(α))δy],

δu =Cc(α)δxc +Dc(α)[y− r]

+ [
∂ue(α)

∂α
−Cc(α)

∂xc
e(α)

∂α
]× [

∂ p
∂y

(ye(α))δy].

(16)

Comparing (16) with (10), we see there are additional terms, and
we refer to them as hidden coupling terms following the notation
of [20]. In order to get rid of these hidden coupling terms, the
following condition must be satisfied

[Ac(α)
∂xc

e(α)

∂α
]× [

∂ p
∂y

(ye(α))δy] = 0,

[
∂ue(α)

∂α
−Cc(α)

∂xc
e(α)

∂α
]× [

∂ p
∂y

(ye(α))δy] = 0.
(17)

It is not always easy to come up with solutions to satisfy condi-
tion (17). In order to make the design process easier, we control
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the system via filtered inputs, rather than the input themselves,
so there is no need for equilibrium control value other than zero
(i.e. xc

e(α) = 0,ve(α) = 0,∀α , where ve(α) is the parameterized
steady-state variables for the new inputs).

The plant (1) with the filtered inputs, becomes

[
ẋp

u̇

]
=

[
f p(xp,u)
−ηcu

]
+

[
0

ηc× I

]
v,

y = gp(xp,u),
(18)

The controller has the general form

ẋc = f c(xc,y,r),

v = gc(xc,y,r),
(19)

with the input and output signals corresponding to those of the
nonlinear plant (18). Now, combining (18) and (19) leads to

 ẋp

u̇
ẋc


︸ ︷︷ ︸

ẋ

=

 f p(xp,u)
−ηcu

f c(xc,gp(xp,u),r)


︸ ︷︷ ︸

f (x,r)

+

 0
ηc× I

0


︸ ︷︷ ︸

B

v,

v = gc(xc,gp(xp,u),r)︸ ︷︷ ︸
g(x,r)

,

(20)

and the closed-loop nonlinear system is

ẋ = f (x,r)+Bg(x,r),

= F(x,r),
(21)

where x ∈Dx ⊂ℜn+2m, and r ∈Dr ⊂ℜm. The augmented linear
family of systems for the augmented plant (18) becomes

[
δ ẋp

δ u̇

]
︸ ︷︷ ︸

δ ẋaug

=

[
Ap(α) Bp(α)

0 −ηc× I

]
︸ ︷︷ ︸

Aaug(α)

[
δxp

δu

]
︸ ︷︷ ︸

δxaug

+

[
0

ηc× I

]
︸ ︷︷ ︸

Baug

δv,

δy = [Cp(α),Dp(α)]︸ ︷︷ ︸
Caug(α)

[
δxp

δu

]
︸ ︷︷ ︸

δxaug

,
(22)

and the controller has the similar structure as (8)

δ ẋc = Ac
v(α)δxc +Bc

v(α)[δy−δ r],

δv =Cc
v(α)δxc +Dc

v(α)[δy−δ r], ∀α ∈Ω,
(23)

where

δv = v− ve(α), ∀α ∈Ω. (24)

Now, since xc
e(α) = 0, ve(α) = 0, ∀α , the controller is

ẋc = Ac
v(α)xc +Bc

v(α)[δy−δ r],

v =Cc
v(α)xc +Dc

v(α)[δy−δ r], ∀α ∈Ω,
(25)

rewriting controller (25) with α(t) = p(y(t)), we obtain

ẋc = Ac
v(p(y))xc +Bc

v(p(y))[y− r],

v =Cc
v(p(y))xc +Dc

v(p(y))[y− r].
(26)

Linearization of (26) about an equilibrium specified by α gives
(25), so there are no hidden coupling terms similar to the ones we
saw in (16), and the condition (17) is satisfied. One of the options
for control design is to set the controller matrices as follows

Ac
v(α) = Ac

v =−εcI, Bc
v(α) = Bc = I,

Cc
v(α) = Ki(α), Dc

v(α) = Kp(α),
(27)

which is a kind of proportional-plus-integral (PI) control, where
Ki(α) is the integral control gain matrix, and Kp(α) is the pro-
portional control gain matrix. Hence the controller for the aug-
mented plant linearization family (22) has the final form

[
ẋc

v

]
=

[
−εcI I −I
Ki(α) Kp(α) −Kp(α)

]  xc

δy
δ r

 , ∀α ∈Ω. (28)

The linearized closed-loop system (22) with controller (25) be-
comes

 δ ẋp

δ u̇
ẋc


︸ ︷︷ ︸

δ ẋ

=

 Ap(α) Bp(α) 0
ηcDc

v(α)Cp(α) −ηcI +Dc
v(α)Dp(α) ηcCc

v(α)
Bc

v(α)Cp(α) Bc
v(α)Dp(α) Ac

v(α)


︸ ︷︷ ︸

Acl(α) δxp

δu
xc


︸ ︷︷ ︸

δx

+

 0
−ηcDc

v(α)
−Bc

v(α)


︸ ︷︷ ︸

Bcl(α)

δ r, ∀α ∈Ω.

(29)
For the case where we have plant states as the outputs δy = δxp,
(i.e. Cp(α) = I,Dp(α) = 0) the linearized closed-loop system
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(22) with controller (28) becomes

 δ ẋp

δ u̇
ẋc


︸ ︷︷ ︸

δ ẋ

=

 Ap(α) Bp(α) 0
ηcKp(α) −ηcI ηcKi(α)

I 0 − εcI


︸ ︷︷ ︸

Acl(α)

 δxp

δu
xc


︸ ︷︷ ︸

δx

+

 0
−ηcKp(α)
−I


︸ ︷︷ ︸

Bcl(α)

δ r, ∀α ∈Ω.

(30)

3 Stability Analysis
In this section we show the stability of the closed-loop non-

linear system by using ”global linearization” technique. The sta-
bility is due to the existence of a single quadratic Lyapunov func-
tion for all α ∈ Ω, by computing a single Lyapunov matrix P
using convex optimization tools.

Assumption 1. The matrices Acl and Bcl are bounded

||Acl(t)|| ≤ kA, ||Bcl(t)|| ≤ kB, ∀t > 0, (31)

where kA and kB are constants.

To analyze the stability of the nonlinear closed-loop system, we
use a technique known as ”global linearization” developed in [9–
11].

Theorem 1. Consider the closed-loop system (21), and as-
sume there is a family of equilibrium points (xe,re) such that
F(xe,re) = 0. Define Anl

cl =
∂F
∂x ∈ S, ∀x ∈ Dx, where S is the set

of linearizations of system (21)

S := {Anl
cl ,∀x ∈ Dx}. (32)

Assume there exists a symmetric positive definite matrix P, such
that

PAnl
cl +AnlT

cl P < 0, ∀Anl
cl ∈ S, (33)

then the system (21) is asymptotically stable.

Remark 1. In practice we can not obtain S, instead, we can
linearize system (21) for a large number of states xi, i = 1, . . . ,L,
which we claim is sufficient to cover the set of actual operating
conditions, to show the stability of the closed-loop system. Define
S as a matrix polytope described by its vertices

S := Co{Anl
cl1 , ...,A

nl
clL}, (34)

where Anl
cli

= ∂F
∂x

∣∣∣
x=xi
∈ S, for all i ∈ {1,2, ...,L}. Note that Anl

cli

can be obtained by linearizing the nonlinear system (21) at non-
equilibrium points (transient condition), and also at equilibrium
points (steady state condition), which in this paper, are repre-
sented by Acl(αi). Then using convex optimization tools [37,38],
we compute a common symmetric positive definite matrix P, such
that

PAnl
cli +AnlT

cli P < 0, ∀i ∈ {1,2, ...,L}. (35)

With assumption 1 satisfied, we can verify Acl(α) ∈ S, for all
α ∈Ω, then system (29) is also asymptotically stable.

4 Turboshaft Engine Example
We apply the proposed output dependent gain scheduling

controller to a physics-based model of the JetCat SPT5 tur-
boshaft engine driving a variable pitch propeller developed in
[39, 40]. Note that some of the plant states and inputs have been
non-dimentionalized by their design values; fuel flow input, u1,
is divided by 0.0035323 (kg/s), core spool speed, N2, which is
the first plant state (xp

1 ), and is divided by 170000 RPM, and
fan spool speed, N1, which is the second plant state (xp

2 ), and is
divided by 7000 RPM. The complete setup of the JetCat SPT5
turboshaft engine with a variable pitch propeller on the test stand
is shown in Figure 2.

4.1 Equilibrium Manifold
For a standard day at sea level condition we chose five prop-

erly separated equilibrium points on the plant equilibrium man-
ifold for linearizing the plant model at those points. The lin-
earization matrices for these five equilibrium points and steady
state values of the engine variables, scheduling parameter and
control parameters are given as follows:

Equilibrium Point 1 (Full Thrust):
u1e1 = 1.0, u2e1 = 16 (deg), x1e1 = 1.0, x2e1 =
0.9524, Te1 = 255.8685 (N), α1 = 1.3810, and

Ap
1 =

[
−5 0
3.5 −2.3

]
, Bp

1 =

[
1.4 0

0.63 −0.085

]
, Cp

1 = I,

Ki1 =
[
−0.5 −0.5
−0.5 −0.5

]
, K p1 =

[
−0.5 −0.5
−0.5 −0.5

]
.

(36)

Equilibrium Point 2:
u1e2 = 0.7, u2e2 = 16 (deg), x1e2 = 0.8826, x2e2 =
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FIGURE 2. JetCat SPT5 turboshaft engine setup on the test stand

0.6263, Te2 = 181.9711 (N), α2 = 1.0822, and

Ap
2 =

[
−2.83 −0.0008
1.20 −2.10

]
, Bp

2 =

[
1.14 0
0.78 −0.054

]
, Cp

2 = I,

Ki2 =
[
−0.4 −0.4
−0.4 −0.4

]
, K p2 =

[
−0.4 −0.4
−0.4 −0.4

]
.

(37)

Equilibrium Point 3 (Cruise):
u1e3 = 0.4685, u2e3 = 16 (deg), x1e3 = 0.7264, x2e3 =
0.5, Te3 = 70.5125 (N), α3 = 0.8818, and

Ap
3 =

[
−1.9 0.061
0.45 −1.1

]
, Bp

3 =

[
1.57 0
0.3 −0.023

]
, Cp

3 = I,

Ki3 =
[
−0.3 −0.3
−0.3 −0.3

]
, K p3 =

[
−0.3 −0.3
−0.3 −0.3

]
.

(38)

Equilibrium Point 4:
u1e4 = 0.3, u2e4 = 16 (deg), x1e4 = 0.5327, x2e4 =

0.3678, Te4 = 38.155 (N), α4 = 0.6473, and

Ap
4 =

[
−0.85 0.032
0.32 −0.64

]
, Bp

4 =

[
1.1 0

0.17 −0.011

]
, Cp

4 = I,

Ki4 =
[
−0.2 −0.2
−0.2 −0.2

]
, K p4 =

[
−0.2 −0.2
−0.2 −0.2

]
.

(39)

Equilibrium Point 5 (Idle):
u1e5 = 0.145, u2e5 = 16 (deg), x1e5 = 0.295, x2e5 =
0.161, Te5 = 7.317 (N), α5 = 0.3361, and

Ap
5 =

[
−0.38 −0.0008
0.26 −0.34

]
, Bp

5 =

[
0.7 0
0.1 −0.0024

]
, Cp

5 = I,

Ki5 =
[
−0.1 −0.1
−0.1 −0.1

]
, K p5 =

[
−0.1 −0.1
−0.1 −0.1

]
.

(40)

FIGURE 3. Ap(α) components as functions of parameter α

Other controller parameters are εc = 1, ηc = 3. The ele-
ments of Ap(α) and Bp(α) matrices have been shown as func-
tions of scheduling parameter α in figures 3 and 4. In this sim-
ulation, the scheduling parameter, α , is defined to be the Eu-
clidean norm of the gas turbine engine spool speeds, which are
the plant outputs and capture the engine nonlinearities. Piece-
wise linear interpolation has been used to compute matrices in
between the available linearization matrices of each pair of ad-
jacent equilibrium points. The equilibrium values of the plant
states and control inputs are shown in figure 5 as functions of
scheduling parameter α . Piecewise linear interpolation has been
used to compute equilibrium values in between each pair of adja-
cent equilibrium points. The equilibrium manifold in a 3D space
of two spool speeds and fuel flow control input is shown in fig-
ure 6. The elements of control matrices Kp(α) and Ki(α) have
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FIGURE 4. Bp(α) components as functions of parameter α

FIGURE 5. xp
e (α) and ue(α) as functions of parameter α

FIGURE 6. Engine equilibrium manifold in 3D space of spool speeds
and fuel control input

FIGURE 7. Kp(α) components as functions of parameter α

FIGURE 8. Ki(α) components as functions of parameter α

been shown as functions of scheduling parameter α in figures 7
and 8. Piecewise linear interpolation has been used to interpo-
late Kp(α) and Ki(α) using the predesigned indexed linear con-
trollers, which are given in equations (36) to (40).

4.2 Simulation Results
To show the stability of the closed-loop system, 40 differ-

ent (30 equilibrium, and 10 non-equilibrium) linearizations have
been used, to solve inequality (35), in Matlab with the aid of
YALMIP [37] and SeDuMi [38] packages. The numerical value
for the common matrix P is

P=


0.5232 0.0059 0.0913 −0.0177 −0.0293 −0.0011
0.0059 0.3406 0.0132 −0.0082 −0.0862 −0.0114
0.0913 0.0132 0.1721 −0.0461 0.0044 0.0105
−0.0177 −0.0082 −0.0461 0.1275 0.0388 0.0282
−0.0293 −0.0862 0.0044 0.0388 0.2684 −0.0211
−0.0011 −0.0114 0.0105 0.0282 −0.0211 0.2484

 ,
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where its condition number is 6.8910. Here, we implement the

FIGURE 9. History of the states (xp(t)) for the nonlinear system and
the linear parameter dependent model

FIGURE 10. History of the rate of states (ẋp(t)) for the nonlinear
system and the linear parameter dependent model

proposed parameter dependent gain scheduled controller to oper-
ate the JetCat SPT5 turboshaft engine. This case study, simulates
the engine acceleration from the idle thrust to the cruise condi-
tion and then its deceleration back to the idle condition in a stable
manner, with proper tracking performance, for the standard day
sea level condition. Simulation results are shown in figures 9 to
25. Figure 9 and 10, shows the history of the nonlinear system
and the linear parameter dependent model states, xp(t), and the
rate of states, ẋp(t). We can conclude that, the linearized model
is a very good approximation of the real nonlinear plant. Fig-
ure 11, shows the history of the norm of the closed-loop system

FIGURE 11. Norm of the closed-loop system matrices (||Acl ||), and
(||Bcl ||)

FIGURE 12. Closed-loop system eigenvalues (λ [Acl(α)])

matrices ||Acl ||, and ||Bcl ||. The figure shows the boundedness
of these two matrices, in accordance with Assumption 1, where
kA = 4.0327, and kB = 2.1512. Figure 12, shows the history of
the closed-loop system matrix eigenvalues λ{Acl}. All the eigen-
values remain negative with the time change of the scheduling
parameter α . Figure 13, shows the history of the schedul-
ing parameter α = p(y) = ||y|| = ||xp|| (the Euclidean norm of
the engine spool speeds). The history of the scheduling param-
eter rate α̇ = xpT ẋp

||xp|| , also has been plotted. Both α and α̇ are
bounded. Figure 14, shows the phase plot for both spool dynam-
ics. Figure 15, shows the evolution of the plant states which are
high and low spool speeds. Figure 16, shows the time evolution
of the controller states.

Figures 17 and 18, show the outputs (i.e., high and low
spool speeds) tracking their reference signals properly. Figure
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FIGURE 13. Scheduling Parameter (α = ||xp||) and its rate of change
(α̇ = xpT ẋp

||xp|| )

FIGURE 14. High and low spool speeds vs. high and low spool ac-
celerations

19, shows the history of the thrust and it is following its refer-
ence command from idle to cruise condition and then back to the
idle for standard day, sea level condition. Figure 20, shows the
evolution of the control inputs v(t) = [v1(t),v2(t)]T , which are
inputs to the augmented system, each element is corresponding
to one of the control inputs to the original system. Figure 21,
shows time rates of fuel and prop pitch angle inputs. Figure 22,
shows fuel flow and propeller pitch angle histories as the control
inputs to the plant. Figures 23 and 24, show the evolution of the
controllers integral (Ki(α)) and proportional (Kp(α)) gain matri-
ces. These gains have been obtained by interpolation using the
predesigned indexed family of fixed-gain controllers, and each
controller corresponds to one equilibrium point of the engine.
The numerical values of these gains are given in equations (38)
to (40), which represents the controller gains for idle and cruise
condition and one more equilibrium point in between these two

FIGURE 15. Plant states: high and low spool speeds (xp)

FIGURE 16. Controller states (xc)

FIGURE 17. Output: high spool speed and its reference signal

operating points. Figure 25, shows the histories of turbine tem-
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FIGURE 18. Output: low spool speed and its reference signal

FIGURE 19. Thrust and its reference signal

FIGURE 20. Control inputs to the augmented system (v(t))

perature, thrust specific fuel consumption (TSFC), compressor

FIGURE 21. Rate of change for fuel and prop pitch angle control
inputs (u̇(t))

FIGURE 22. Fuel and prop pitch angle control inputs (u(t))

pressure ratio and corrected air flow rate.

4.3 Engine Limit Control
To handle the limits on the turbine engine system states and

control inputs, the developed gain scheduled control system can
be integrated with a reference governor. Reference governors
have been developed previously; one of the good examples of
this approach is presented in [41]. This method addresses the
problem of satisfying input and/or state hard constraints in non-
linear control systems. The approach uses receding horizon strat-
egy and consists of adding to the primal compensated nonlinear
system a reference governor. The proposed reference governor is
a discrete-time device which handles the reference to be tracked
in an on-line fashion. The resulting hybrid system satisfies the
constraints as well as stability and tracking requirements [41].
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FIGURE 23. Controllers integral gain matrix (Ki(α)) elements histo-
ries

FIGURE 24. Controllers proportional gain matrix (Kp(α)) elements
histories

5 Conclusions
A MIMO linear parameter dependent model of the nonlin-

ear gas turbine engine system has been developed; and a gain
scheduling controller with stability guarantees for this system has
been designed. Piecewise linear interpolation technique has been
used for interpolating the parameter varying gain scheduling con-
troller in between the predesigned indexed family of fixed-gain
controllers. The scheduling variable in the design process is an
endogenous parameter (i.e., a function of the plant outputs) and it
has been defined to be the Euclidean norm of the gas turbine en-
gine spool speeds. Stability of the closed-loop gas turbine engine
system with a gain scheduling controller, has been shown using
global linearization method. It also has been shown that a single
quadratic Lyapunov function can be computed for this system us-
ing convex optimization tools, which guarantees the stability of

FIGURE 25. Turbine temperature, TSFC, compressor overall pres-
sure ratio and air flow rate histories

the closed-loop nonlinear gas turbine engine system with a gain
scheduling controller. Simulation results confirmed the applica-
bility of the proposed controller to the nonlinear physics-based
JetCat SPT5 turboshaft engine model for large transients.
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